Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 98(10): 2601-2614, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28727905

RESUMEN

Over the last two decades, empirical work has established that higher biodiversity can lead to greater primary productivity; however, the importance of different aspects of biodiversity in contributing to such relationships is rarely elucidated. We assessed the relative importance of species richness, phylogenetic diversity, functional diversity, and identity of neighbors for stem growth 3 yr after seedling establishment in a tree diversity experiment in eastern Minnesota. Generally, we found that community-weighted means of key functional traits (including mycorrhizal association, leaf nitrogen and calcium, and waterlogging tolerance) as well as species richness were strong, independent predictors of stem biomass growth. More phylogenetically diverse communities did not consistently produce more biomass than expected, and the trait values or diversity of individual functional traits better predicted biomass production than did a multidimensional functional diversity metric. Furthermore, functional traits and species richness best predicted growth at the whole-plot level (12 m2 ), whereas neighborhood composition best predicted growth at the focal tree level (0.25 m2 ). The observed effects of biodiversity on growth appear strongly driven by positive complementary effects rather than by species-specific selection effects, suggesting that synergistic species' interactions rather than the influence of a few important species may drive overyielding.


Asunto(s)
Biodiversidad , Árboles/clasificación , Biomasa , Ecosistema , Minnesota , Filogenia , Árboles/crecimiento & desarrollo
2.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26622067

RESUMEN

Influences of soil environment and willow host species on ectomycorrhizal fungi communities was studied across an hydrologic gradient in temperate North America. Soil moisture, organic matter and pH strongly predicted changes in fungal community composition. In contrast, increased fungal richness strongly correlated with higher plant-available phosphorus. The 93 willow trees sampled for ectomycorrhizal fungi included seven willow species. Host identity did not influence fungal richness or community composition, nor was there strong evidence of willow host preference for fungal species. Network analysis suggests that these mutualist interaction networks are not significantly nested or modular. Across a strong environmental gradient, fungal abiotic niche determined the fungal species available to associate with host plants within a habitat.


Asunto(s)
Hongos/genética , Hongos/aislamiento & purificación , Micorrizas/genética , Raíces de Plantas/microbiología , Salix/microbiología , Árboles/microbiología , Ecosistema , Hongos/clasificación , Especificidad del Huésped , Hidrología , Micorrizas/clasificación , Micorrizas/aislamiento & purificación , América del Norte , Fósforo , Suelo/química , Microbiología del Suelo , Simbiosis , Agua
3.
Mol Ecol ; 19(9): 1877-97, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20374486

RESUMEN

The integration of fossil and molecular data can provide a synthetic understanding of the ecological and evolutionary history of an organism. We analysed range-wide maternally inherited mitochondrial DNA and paternally inherited chloroplast DNA sequence data with coalescent simulations and traditional population genetic methods to test hypotheses of population divergence generated from the fossil record of Douglas-fir (Pseudotsuga menziesii), an ecologically and economically important western North American conifer. Specifically, we tested (i) the hypothesis that the Pliocene orogeny of the Cascades and Sierra Nevada caused the divergence of coastal and Rocky Mountain Douglas-fir varieties; and (ii) the hypothesis that multiple glacial refugia existed on the coast and in the Rocky Mountains. We found that Douglas-fir varieties diverged about 2.11 Ma (4.37 Ma-755 ka), which could be consistent with a Pliocene divergence. Rocky Mountain Douglas-fir probably resided in three or more glacial refugia. More variable molecular markers would be required to detect the two coastal refugia suggested in the fossil record. Comparison of mitochondrial DNA and chloroplast DNA variation revealed that gene flow via pollen linked populations isolated from seed exchange. Postglacial colonization of Canada from coastal and Rocky Mountain refugia near the ice margin at the Last Glacial Maximum produced a wide hybrid zone among varieties that formed almost exclusively by pollen exchange and chloroplast DNA introgression, not seed exchange. Postglacial migration rates were 50-165 m/year, insufficient to track projected 21st century warming in some regions. Although fossil and genetic data largely agree, each provides unique insights.


Asunto(s)
ADN de Cloroplastos/genética , ADN Mitocondrial/genética , Genética de Población , Filogenia , Pseudotsuga/genética , ADN de Plantas/genética , Evolución Molecular , Fósiles , Flujo Génico , Variación Genética , Geografía , Mutación , América del Norte , Polen/genética , Pseudotsuga/clasificación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA